Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[(dichloridozinc)- μ-bis-(pyridin-3-yl)methanone- $\left.\kappa^{2} N: N^{\prime}\right]$

Fan Zhang

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
Correspondence e-mail: zhangfcnu@163.com

Received 21 October 2011; accepted 5 November 2011

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.020 ; w R$ factor $=0.055$; data-to-parameter ratio $=13.6$.

In the title polymer, $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)\right]_{n}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom lies on a twofold rotation axis and has a distorted tetrahedral $\mathrm{ZnCl}_{2} \mathrm{~N}_{2}$ geometry involving two chloride donors and two N atom donors from μ_{2}-bridging bis(pyridin-3-yl)methanone ligands, which also have twofold symmetry. A zigzag chain structure is formed, extending along (001). Each chain is surrounded by three others which are interconnected through weak $\mathrm{C}=\mathrm{O} \cdots \pi_{\text {pyridyl }}[\mathrm{O} \cdots$ centroid $=2.999(3) \AA]$ and $\pi_{\text {pyridyl }}-\pi_{\text {pyridyl }}$ interactions [minimum ring centroid separation $=4.014(2) \AA]$, giving a three-dimensional framework.

Related literature

For background to the coordination chemistry of pyridylketone derivatives, see: Huang et al. (2003); Wan et al. (2008). For transition metal complexes of bis(3-pyridyl)ketone, see: Chen et al. (2005, 2009); Chen \& Mak (2005).

Experimental

Crystal data
$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)\right]$
$M_{r}=320.46$
Monoclinic, C2/c
$a=9.9266$ (7) A
$b=15.5724$ (10) A
$c=7.8963$ (6) A
$\beta=93.878$ (4) ${ }^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.913, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020 \quad 79$ parameters
$w R\left(F^{2}\right)=0.055$
$S=1.11$
1076 reflections
$V=1217.82(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.44 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.40 \times 0.32 \times 0.22 \mathrm{~mm}$

3481 measured reflections 1076 independent reflections 1041 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{2} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e} \AA^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors are grateful for financial support from Beijing Municipal Education Commission.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2159).

References

Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X. D., Guo, J. H., Du, M. \& Mak, T. C. W. (2005). Inorg. Chem. Comтии. 8, 766-768.
Chen, X. D. \& Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.
Chen, X. D., Wan, C. Q., Sung, H. H. Y., Williams, I. D. \& Mak, T. C. W. (2009). Chem. Eur. J. 15, 6518-6528.
Huang, W. L., Lee, J. R., Shi, S. Y. \& Tsai, C. Y. (2003). Transition Met. Chem. 28, 381-388.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wan, C. Q., Han, J. \& Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.

supplementary materials

Acta Cryst. (2011). E67, m1764 [doi:10.1107/S160053681104671X]

catena-Poly[(dichloridozinc)- μ-bis(pyridin-3-yl)methanone- $\left.\kappa^{2} N: N^{\prime}\right]$

F. Zhang

Comment

The carbonyl $(\mathrm{C}=\mathrm{O})$ group in pyridyl ketone derivatives produces versatile angular building blocks for use as ligands for the generation of various coordination supramolecular architectures (Huang et al., 2003). With two pendant pyridyl rings and the rotatable $\mathrm{C}-\mathrm{C} \sigma$ bonds, bis(3-pyridyl)methanone functions as an excellent μ_{2}-bridging linker to assemble various transition metal salts into diverse coordination motifs, such as one-dimensional helical and zigzag chains (Chen \& Mak, 2005), two-dimensional nets (Chen et al., 2005), as well as honeycomb-like three-dimensional frameworks (Chen et al., 2009).

Reported here is the structure of a new complex of bis(3-pyridyl)methanone with ZnCl_{2}, the title compound $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{5} \mathrm{NH}_{4}\right)_{2}\right]_{\mathrm{n}}$. In this complex, the Zn^{2+} lies on a crystallographic twofold rotation axis and adopts a distorted tetrahedral stereochemistry $\left[\mathrm{N} 1 — \mathrm{Zn} 1 — \mathrm{~N} 1^{\mathrm{i}}=96.94(8)^{\circ} ; \mathrm{Cl1}-\mathrm{Zn} 1 — \mathrm{Cl} 1^{\mathrm{i}}=122.25(3)^{\circ}\right.$: symmetry code (i) $\left.-x+1,-y,-z+1\right]$, with two chloride donors and two N donors from separate μ^{2}-bridging bis(3-pyridyl)methanone ligands, in which the $\mathrm{C}=\mathrm{O}$ group also lies on a twofold rotation axis (Fig. 1). This results in a zigzag chain structure extending along (001) (Fig. 2). Each helix is surrounded by three others which are interconnected through weak $\mathrm{C} 6=\mathrm{O} 1 \cdots \pi_{\text {pyridyl }}$ interactions $\left[\mathrm{O} 1 \cdots \mathrm{Cg} 1{ }^{\mathrm{iii}}\right.$ 2.999 (3) \AA] [symmetry code (iii) $x+3 / 2, y+1 / 2, z+1$) and weak $\pi_{\text {pyridyl }} \cdots \pi_{\text {pyridyl }}$ interactions [ring centroid separation $\mathrm{Cg} 1 \cdots \mathrm{Cg} 1^{\text {iv }}=4.014$ (2) \AA] [symmetry code (iv) $-x+3 / 2, y+1 / 2,-z+3 / 2$] to form a three-dimensional framework (Fig. 3). For the $\mathrm{C}=\mathrm{O} \cdots \pi_{\text {pyridyl }}$ contact, the O atom is embraced by two symmetry related pyridyl rings, similar to that found in $\left[\mathrm{Cu}(\mathrm{L})_{2}\left(\mathrm{BF}_{4}\right)_{2}\right]($ Wan et al., 2008) $(\mathrm{C}=\mathrm{O} \cdots$ centroid $=2.9-3.1 \AA)[\mathrm{L}=2,6$-pyridinediyl(bis(3-pyridinyl)methanone) $]$.

Experimental

The bis(3-pyridinyl)methanone ligand was obtained using the literature reaction procedure (Chen et al., 2005). Reaction of this compound ($19.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) with $\mathrm{ZnCl}_{2}(14.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in methanol gave a colorless solution which after filtration, was allowed to stand in air for two weeks, gave colourless block-like crystals (yield $20.8 \mathrm{mg} ; 65 \%$).

Refinement

All H atoms were located in the difference electron density maps but were placed in idealized positions and allowed to ride on the carrier atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The title complex showing the atom-numbering scheme, with displacement ellipsoids shown at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y,-z$.

Fig. 2. The helical chain structure of the title compound, extending along the c axial direction. All H atoms are omitted.

Fig. 3. The packing structure of the title compound as viewed down the c axis of the unit cell.
catena-Poly[(dichloridozinc)- μ-bis(pyridin-3-yl)methanone- $\left.\kappa^{2} N: N^{\prime}\right]$

Crystal data
$\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\right)\right]$
$F(000)=640$

$$
M_{r}=320.46
$$

Monoclinic, C2/c
Hall symbol: -C 2yc
$a=9.9266$ (7) \AA
$b=15.5724(10) \AA$
$c=7.8963(6) \AA$
$\beta=93.878$ (4) ${ }^{\circ}$
$V=1217.82(15) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.748 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 254 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=2.44 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.40 \times 0.32 \times 0.22 \mathrm{~mm}$

1076 independent reflections
1041 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-16 \rightarrow 18$
$l=-9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0332 P)^{2}+0.7286 P\right] P=\left(F_{\mathrm{o}}{ }^{2}+\right.$
$\left.2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Zn1	0.5000	$0.296457(17)$	0.7500	$0.03157(13)$
Cl1	$0.35267(5)$	$0.36506(3)$	$0.57611(6)$	$0.04896(16)$
N1	$0.59607(15)$	$0.20836(9)$	$0.60337(18)$	$0.0307(3)$
C2	$0.77431(19)$	$0.10656(14)$	$0.5838(3)$	$0.0444(5)$
H2A	0.8584	0.0862	0.6246	0.053^{*}
C1	$0.71626(19)$	$0.17586(13)$	$0.6597(2)$	$0.0380(4)$
H1A	0.7621	0.2011	0.7535	0.046^{*}
C3	$0.7061(2)$	$0.06820(13)$	$0.4475(2)$	$0.0411(5)$
H3A	0.7422	0.0203	0.3966	0.049^{*}
C4	$0.58196(18)$	$0.10157(11)$	$0.3857(2)$	$0.0311(4)$
C5	$0.53146(17)$	$0.17218(11)$	$0.4663(2)$	$0.0299(4)$
H5A	0.4497	0.1955	0.4242	0.036^{*}
C6	0.5000	$0.05441(16)$	0.2500	$0.0340(5)$
O1	0.5000	$-0.02376(12)$	0.2500	$0.0499(5)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0417(2)$	$0.02859(19)$	$0.02354(17)$	0.000	$-0.00413(12)$	0.000
C 11	$0.0606(3)$	$0.0468(3)$	$0.0376(3)$	$0.0161(2)$	$-0.0108(2)$	$0.0043(2)$
N 1	$0.0368(8)$	$0.0304(8)$	$0.0245(7)$	$-0.0003(6)$	$-0.0006(6)$	$0.0026(5)$
C 2	$0.0372(10)$	$0.0514(12)$	$0.0442(11)$	$0.0107(9)$	$0.0001(8)$	$0.0125(9)$
C 1	$0.0397(10)$	$0.0429(10)$	$0.0307(9)$	$-0.0023(8)$	$-0.0033(8)$	$0.0076(8)$
C 3	$0.0505(11)$	$0.0366(10)$	$0.0373(10)$	$0.0142(8)$	$0.0112(8)$	$0.0071(8)$
C 4	$0.0428(10)$	$0.0275(9)$	$0.0236(8)$	$0.0026(7)$	$0.0057(7)$	$0.0056(6)$
C 5	$0.0349(9)$	$0.0288(9)$	$0.0257(8)$	$0.0025(7)$	$0.0001(7)$	$0.0037(7)$
C6	$0.0494(14)$	$0.0271(13)$	$0.0268(12)$	0.000	$0.0121(10)$	0.000
O1	$0.0798(15)$	$0.0254(10)$	$0.0452(11)$	0.000	$0.0094(10)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0692(15)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.0692(15)$
$\mathrm{Zn} 1-\mathrm{Cl1} 1^{\mathrm{i}}$	$2.2123(5)$
$\mathrm{Zn} 1-\mathrm{Cl} 1$	$2.2123(5)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.344(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.344(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.369(3)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.379(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{~N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$96.94(8)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{Cl1}{ }^{\mathrm{i}}$	$106.45(4)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$110.92(4)$

$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.395(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.382(2)$
$\mathrm{C} 4-\mathrm{C} 6$	$1.494(2)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 6-\mathrm{O} 1$	$1.217(3)$
$\mathrm{C} 6-\mathrm{C} 4$	
	$1.494(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	118.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	$119.40(18)$

sup-4

supplementary materials

$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{Cl} 1$	110.92 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3
N1-Zn1-Cl1	106.45 (4)	C5-C4-C3	118.33 (17)
$\mathrm{Cl1}{ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{Cl1}$	122.25 (3)	C5-C4-C6	121.66 (15)
C5-N1-C1	118.25 (15)	C3-C4-C6	119.56 (16)
C5-N1-Zn1	121.04 (12)	N1-C5-C4	122.45 (16)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	119.81 (12)	N1-C5-H5A	118.8
C3-C2-C1	118.92 (17)	C4-C5-H5A	118.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.5	O1-C6-C4	119.45 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.5	O1-C6-C4 ${ }^{\text {ii }}$	119.45 (10)
N1-C1-C2	122.60 (17)	C4-C6-C4 ${ }^{\text {ii }}$	121.1 (2)
N1-C1-H1A	118.7		
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	83.07 (13)	C2-C3-C4-C5	-0.7 (3)
$\mathrm{Cl1} 1^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	-166.32 (11)	C2-C3-C4-C6	-173.16(16)
$\mathrm{Cl} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 5$	-31.20 (13)	C1-N1-C5-C4	2.2 (2)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	-85.85 (13)	Zn1-N1-C5-C4	-166.90 (12)
$\mathrm{Cl1} 1^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	24.76 (14)	C3-C4-C5-N1	-1.4 (2)
$\mathrm{Cl1}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1$	159.88 (12)	C6-C4-C5-N1	170.88 (15)
C5-N1-C1-C2	-0.9 (3)	C5-C4-C6-O1	-136.51 (12)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	168.33 (14)	C3-C4-C6-O1	35.68 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	-1.2 (3)	C5-C4-C6-C4ii	43.49 (12)
C1-C2-C3-C4	1.9 (3)	C3-C4-C6-C4ii	-144.32 (17)

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $-x+1, y,-z+1 / 2$.

Fig. 1

Fig. 2

Fig. 3

